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ABSTRACT

A commercial platinized tin oxide catalyst used for low-temperature CO

oxidation has been characterized using ion scattering spectroscopy (ISS),

Auger electron spectroscopy (AES) and electron spectroscopy for chemical

analysis (ESCA) before and after reduction in 40 Tort of CO for I hour at

various temperatures from 75 to 175°C. The reduction results in loss of

surface oxygen, formation of metallic tin, conversion of platinum oxides to

Pt-O-Sn and Pt(OH)2 and a small amount of metallic Pt which alloys with the

tin. These results should be useful in understanding how the pretreatment

temperature affects the catalytic activity of platinized tin oxide toward CO
oxidation.

INTRODUCTION

Low-temperature, CO-oxidation catalysts are important for long-life,

closed-cycle operation of CO 2 lasers which are used in remote sensing applica-

tions such as weather monitoring from space vehicles. The electrical dis-

charge in CO 2 lasers decomposes relatively small amounts of CO 2 into CO and

02 . While the power output of the laser decreases slowly with loss of CO 2 and

buildup of CO, it decreases dramatically with buildup of very low 02 concen-
trations. A solution to this problem is to recombine the discharge products

back into CO 2 using a heterogeneous catalyst incorporated in some manner into

the laser system. In order to meet volume and weight constraints, it is

necessary for the catalyst to have a high activity at low temperatures (<
100°C).

Stark et al. (I) have found that platinized tin oxide with or without a

Pd modifier is an effective low-temperature CO oxidation catalyst. Based on

this finding, numerous studies of platinized tin oxide systems relating to CO

oxidation have been carried out (2). A 2 wt. % platinized tin oxide catalyst

is now commercially available from Engelhard Industries. Schryer et al. (3)

have studied the catalytic behavior of this material toward CO o×idation and

found that the activity of the catalyst depends upon the pretreatment condi-

tions used as shown in figure I. For the pretreatment and reaction conditions

used (see figure I), the unpretreated catalyst exhibits the lowest long-term

activity. A I00°C pretreatment in CO greatly enhances the long-term activity,

and a further enhancement occurs by carrying out the pretreatment at 125°C.

Utilizing higher pretreatment temperatures up to 225°C yields no change in the

catalytic activity compared to the 125oC pretreatment. In order to understand
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how platinized tin oxide catalysts function in converting CO and 02 to CO 2 at

low temperatures, it is necessary to characterize the composition and chemical

states of the species present at these surfaces. This has been accomplished

in this study using several surface chacterization techniques including ion

scattering spectroscopy (ISS), electron spectroscopy for chemical analysis

(ESCA) and Auger electron spectroscopy (AES) to examine the surface of the

Engelhard catalyst before and after pretreatment in CO as a function of pre-

treatment temperature. It is anticipated that these studies will lead to a

better understanding of this catalytic process and eventually to the develop-

ment of improved catalysts for this application.

EXPERIMENTAL

The Engelhard platinized tin oxide catalyst has an average particle size

of I _m and a BET surface area of 6.9 m2/g. For the characterization studies

the powder was pressed into thin disks about I cm in diameter. These were

inserted directly into the ultrahigh vacuum system for pretreatment and char-

acterization. Pretreatment was carried out by moving the sample into a pre-

paration chamber (base pressure of 10-7 Torr), adjusting the pressure to 40

Torr in CO and heating the sample at the prescribed temperature for I hour.

Then the sample was allowed to cool while the preparation chamber was pumped

down to I0-Y Torr before moving the sample into the characterization chamber

(base pressure of 10-11 Torr) for analysis by ISS, ESCA and AES. The samples

were heated at 75, 100, 125 and 175°C in the preparation chamber using a

sample heater (4) which did not expose the reducing gas to hot spots which

would have dissociated the CO. Two different as-prepared samples were ana-

lyzed without prereduction, and the results were found to be reproducible. A

new sample was prepared and introduced into the analysis chamber for each

reduction temperature used.

ISS, ESCA and AES data were taken using a double-pass cylindrical mirror

analyzer (CMA) (Perkin-Elmer PHI Model 25-270) as the charged-particle energy

analyzer. ISS spectra were collected in the nonretarding mode using a _47 °

scattering angle and pulse counting detection (5). A 1-keV, 100 nA 4He +

primary ion beam was defocused over a 1-cm-diameter area, and spectra were

collected as quickly as possible (typically 90 s) to minimize beam damage.

AES was performed in the nonretarding mode using a 3-keV, IO-uA primary elec-

tron beam with a 0.2-mm spot diameter. ESCA was performed in the retarding

mode using Mg Ka excitation and 50-eV pass energy for collection of survey

spectra and 25 eV for obtaining elemental lineshape information.

RESULTS AND DISCUSSION

An ESCA survey spectrum taken from the as-recelved, Engelhard platinized

tin oxide catalyst is shown in figure 2. The peaks present of significant

size are due only to 0 and Sn, and no peaks due to C or other typical contami-

nants appear. In fact, this spectrum is essentially identical to an ESCA

spectrum obtained from a very clean tin oxide surface. It is most interesting

that the predominant Pt 4f peaks are so small that they cannot be readily

discerned in this spectrum. A corresponding Auger spectrum taken from the

same surface is shown in figure 3. Again, the predominant features are due to

Sn and O, and this spectrum is similar to one obtained from a clean tin oxide

surface. However, a feature due to Pt appears at about 64 eV. It can be

described as an edge rather than a typically shaped Auger peak. Similar Pt
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features have been observed in a study of the electrochemisorption of Pt on
tin oxide (6). This feature is more prominent than the Pt ESCApeaks in
figure I. In agreement with the ESCAdata, no contaminant peaks are apparent
in this Auger spectrum. As the catalyst is reduced at various temperatures,
very small changes are observed in the ESCAand Auger spectra corresponding to
figures I and 2 but taken from the reduced surfaces. Therefore, these survey
spectra are not shown.

ISS is a particularly useful technique for examining catalytic surfaces
because it is very highly surface sensitive (outermost one or two atomic
layers). ISS spectra taken before (a) and after (b-e) reduction are shown in
figure 4. The spectrum shown in (a) consists of peaks due to O, Sn, and Pt,
and the high inelastic background is characteristic of ISS spectra taken from
nonmetallic surfaces. In such a case inelastically scattered ions are not
efficiently neutralized since the electron mobility at a nonmetallic surface
is low so these ions contribute to the background signal. A previous study by
Asbury and Hoflund (7) showed that O penetrates beneath the surface during a
room-temperature, oxygen exposure of polycrystalline Sn. This suggests that
the fairly large O peak in (a) is due to O associated with the Pt and/or
perhaps with hydroxyl groups attached to Sn (8) which may lie above the sur-
face.

The ISS spectra shown in figure I (b) to (e) were obtained from samples
reduced in 40 Torr of CO for I hour at 75, 100, 125 and 175°C respectively.
All four spectra have two characteristics in common. Firstly, the pretreat-
ments have resulted in negligible inelastic backgrounds which is indicative of
the formation of surfaces with a metallic nature. Secondly, the O peak is no
longer discernable after the reductions which is also consistent with the
observation that the surfaces appear to be metallic. The reductive pretreat-
ment results in an increase in the Sn-to-Pt ratio, and the extent of this
increase is greater at higher reduction temperatures. An increase in the ISS
Sn/Pt ratio during reduction has been found to be indicative of alloy forma-
tion as described in a study of platinized tin oxide model catalysts by Gard-
ner et al. (9). All of the ISS spectra shown in figure 4 were taken using the
same instrument settings, but the maximumpeak heights vary considerably.
Although the variation is not understood, it could be due to changes in ion
neutralization probability, surface morphological changes or changes in the
concentration of surface hydrogen which have been shown to alter t_e ISS
signal strength (10,11).

Sn 3d ESCAspectra and Sn(MNN)AESspectra taken before and after reduc-
tion are shown in figures 5 and 6 respectively. Before pretreatment (air-
exposed sample) the Sn 3d5/2 lineshape and peak position (486.4 eV) indicate
that the Sn is present in the +2 or +4 oxidation states most likely as SnO,
Sn(OH)2, SnO2 or Sn(OH)4 and that metallic Sn is absent. As discussed by
Hoflund et al. (12), it is not possible to distinguish between these species
based on the ESCASn 3d peaks, but more specific information can be gained
about these species using electron energy loss spectroscopy (ELS) (13,14),
valence-band ESCA(8, 14), electron stimulated desorption (ESD) (8, 15) or
secondary ion mass spectrometry (SIMS) (16-18). The metallic ESCASn 3d5/2
peak appears at an energy of 484.6eV (19). Whena small amount of metallic Sn
and a relatively large amount of tin oxides or hydroxides are present, a
slight broadening appears on the low binding energy sides of the oxidic ESCA
Sn 3d features. This is the case for the 175°C-reduced sample as shown in
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figure 5. Samples reduced at lower temperatures also yield this metallic

shoulder, and the amount of metallic Sn produced generally increases as the

annealing temperature increases with the most being produced at 175°C. How-

ever, the amounts of metallic Sn produced at 75 and I00°C appear to be simi-

lar. Similar observations can be made by considering the AES Sn(MNN) peaks

shown in figure 6. The high kinetic energy oxidic peak lies at 430 eV while

the high kinetic energy metallic peak lies at 423 eV. The peaks shown in

figure 6a are characteristic of oxidic Sn. When metallic Sn is present, the

height of the splitting between the two primary peaks decreases. This is

observed in spectra (b) to (e) taken from the reduced samples. In agreement

with the ESCA Sn 3d spectra, the extent of metall_c Sn formation is greater at

elevated reduction temperatures with the maximum amount of metallic Sn being

produced at 175°C. Further reduction either for prolonged periods or at

higher temperatures than used in this study would undoubtedly result in the

production of increased amounts of metallic Sn.

The ESCA 0 Is peaks are shown in figure 7. These were taken before (a)

and after reduction at (b) 175°C. The peak shown in (a) exhibits a distinct

asymmetry on the high binding energy side due to the presence of hydroxyl

groups which are responsible for a shoulder at about 531.8 eV (8, 20). It is

also possible that the very small shoulder at about 533.0 eV is due to ad-

sorbed water. This assignment is consistent with results obtained in the

study of hydrated polycrystalline tin oxide films by Tarlov and Evans (20).

Pretreatment at 75°C slightly reduces the amounts of adsorbed water and hy-

droxyl groups present while pretreatment at I00°C or above eliminates the

adsorbed water and further reduces the concentration of hydroxyl groups. The

175°C pretreatment results in the lowest surface hydroxyl group concentra-

tion. It is interesting to note that these hydroxyl species are strongly

bonded to the surface and require annealing at 600°C in vacuum for nearly

complete removal (8, 14, 21).

The O content of the near-surface region is decreased by the pretreatment

process. The AES and ESCA O/Sn atomic ratios obtained at the various pre-

treatment temperatures are listed in table I. A decrease in the O/Sn ratio is

caused by loss of adsorbed water, a decrease in hydroxyl group concentration,

reduction of tin oxides and hydroxides to metallic Sn and reduction of SnO 2 to

SnO. However, the relative importance of these factors cannot be completely

assessed from the types of data taken in this study. The amount of Pt present

on these surfaces is so small that changes in the Pt oxidation state, which

are discussed below, would not affect the O/Sn atomic ratios presented in

table I. The AES and ESCA results in table I are different both with respect

to magnitude and trend. The AES data indicate that the near-surface region

loses about 20% of its O regardless of the reduction temperature. The ESCA

O/Sn atomic ratios are considerably larger than the AES values and decrease

monotonically as the pretreatment increases. Either the ESCA values differ

from the AES values due to inaccuracies in the tabulated cross sections or the

variation is due to the fact that AES and ESCA probe different volumes of the

near-surface region. If the difference were due only to inaccurate cross

sections, then the ESCA O/Sn ratios obtained from the reduced samples would

not show such a large variation with reduction temperature. Thus, the varia-

tion is due to the fact the ESCA probes more deeply than AES, which is consis-

tent with mean-free-path arguments also. The kinetic energies of the ESCA O

Is electrons are 723 eV and the Sn 3d electrons are about 770 eV, while the

kinetic energies of the AES 0 electrons are about 510 eV and the Sn electrons

are about 430 eV. The corresponding average mean free paths (I) are about
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6A for ESCA and 4A for AES (24). Since most of the ESCA and AES electrons

originate within a depth of about 31, ESCA probes about 18 A beneath the

surface while AES probes about 12 A . Then, the data of table I indicate

that the near-surface region probed by AES contains less O than the region

probed by ESCA for the untreated sample and samples reduced from 75 to 175°C.

Reduction at any of the temperatures used causes the AES O/Sn ratio to drop

from 1.32 to about 1.06 whereas to ESCA O/Sn ratio decreases monotonically as

the reduction temperature increases. The essentially constant AES value pro-

bably results from a competing process, i.e., O leaving the surface as CO 2

during the reduction and 0 migrating to the near-surface region from further

beneath the surface. This is consistent with the trend of the ESCA data

implying that subsurface reduction takes place to a greater extent at higher

temperatures. A similar phenomenon has been observed previously for the

reduction of a TiO2(O01) surface (25).

The ESCA Pt 4f peaks obtained From the unpretreated samples are shown in

figure 8a, and the peak assignments used in this study are listed in table

I[. Most of these assignments were taken from a standard reference (19), but

the 72.3 eV feature has been assigned as Pt-O-Sn in previous studies of plati-

nized tin oxide surfaces (12, 23). The spectrum shown in figure 8a indicates

that very little metallic Pt is present and that the Pt species consist mostly

of Pt-O-Sn, Pt(OH) 2 and Pt oxides. In fact, a spectrum very similar to this

one has been taken From a codeposited platinum/tin oxide film after calcining
in air at 725 K for 1.5 hours (12).

ESCA Pt 4f spectra taken after pretreating at 75 and I00°C are shown in

figures 8b and c respectively. These two spectra are quite similar in that

very little metallic Pt is present and the predominant species consist of Pt-

O-Sn and Pt(OH) 2. The metallic Pt apparently is in the form of small crystal-

lites. A shoulder due to PtO 2 may also be present in both spectra, but this
shoulder ts smaller after the I00°C reduction. The relative amounts of Pt-O-

Sn and Pt(OH) 2 are similar in both spectra. Pretreating at a temperature 25°C

higher produces a significant change in the Pt species present as shown in

figure 8d. The predominant Pt species after the 125°C reduction are Pt(OH) 2

and Pt-O-Sn in approximately equal amounts. Also, a small amount of metallic

Pt is present after this treatment, and features due to Pt oxides do not ap-

pear.

Reduction at 175°C produces a further and more pronounced shift in Pt

chemical state toward Pt(OH) 2 as shown in figure 8e. The Pt-O-Sn feature is

now a shoulder on the Pt(OH) 2 peak, and the amount of metallic Pt present is

decreased compared to the lower temperature reductions. The spectrum shown in

figure 8a, taken From the untreated sample, exhibits a prominent feature at

79.8 eV. Since the splitting between the Pt 4f7/2 and Pt 4f5/2 peaks is about

3.35 eV, this feature does not correspond to the Pt 4f5/2 peak of any of the
species listed in table II. The 75°C pretreatment reduces the size of this

feature, and it does not appear after the 100 or 125 ° pretreatment. There-

fore, it behaves like an ox_dic feature and reappears in figure 8e.

It is interesting to compare the spectral information contained in figure

8 with the kinetic information contained in figure I. The unpretreated cata-

lyst exhibits a low activity compared to any reduced catalyst. This corre-

lates with the facts that the Pt is predominantly oxidic on the unpretreated

catalyst and that significant changes in the Pt chemical state occur during
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the reductive treatments used in these studies. As the pretreatment tempera-

ture increases, more of the Pt is converted into Pt(OH) 2. This fact suggests

that the Pt(OH) 2 plays an important role in the conversion of CO and 02 into

CO 2 at low temperatures as has also been found to be the case for a silica-
supported platinized tin oxide catalyst (26) for which the catalytic activity

increases by addition of water to the reaction mixture after pretreating the

catalyst at 225°C (27). The previous characterization study (26) demonstrates

that pretreatment of this catalyst at 225°C removes most of the Pt hydroxyl

species thereby lowering its catalytic activity. This does not occur with the

Engelhard catalyst which yields identical catalytic behavior for pretreatments

from 125 to 225°C. The ESCA data are consistent with this fact in that much

of the Pt is present as Pt(OH) 2 after the 125 ° reduction, and it becomes the

predominant Pt chemical state after the 175°C reduction, in this discussion a

relationship is being drawn between the long-term catalytic behavior (past the

first 500 minutes of operation) and the chemical state of the Pt after the

pretreatment but before the reaction is run (time = 0 on figure I). The

initial catalytic behavior is quite complex (3) and changes may occur in the

Pt chemical state during this period. Consequently, characterization studies

are in progress in which the state of the catalytic surface is being examined

as the reaction is run for various periods of time. These studies should lead

to an understanding of the chemical changes responsible for the unusual ini-

tial catalytic behavior and the long-term decay in catalytic activity.

A small amount of metallic Pt forms during both the 125 and 175°C pre-

treatment, and metallic Sn is also present as stated above. Paffett and

Windham (28) have deposited layers of Sn on Pt (111) and found that alloy

formation during annealing at or above 150°C is strongly suggested by their

data. Also Fryberger _ has found that Pd deposited on Sn02(110) alloys

with the Sn even at room temperature. It is anticipated that alloy formation

occurs in the Engelhard catalyst under the pretreatment conditions used in

this study. Since the amount of Pt present on this surface is small, most of

the metallic Sn probably is not alloyed while all of the Pt probably is al-

loyed.

SUMMARY

A platinized tin oxide catalyst commercially available from Engelhard

Industries for low-temperature CO oxidation has been examined using surface

analytical techniques including ISS, AES and ESCA before and after pretreat-

ment by annealing in 40 Torr of CO for I hour at 75, 100, 125 and 175°C, and

the results have been correlated with catalytic activity data. The unpre-

treated sample consists primarily of oxidic Sn (Sn02, SnO and Sn(OH) x) with a

very small amount of Pt present as Pt-O-Sn, Pt(OH) 2, PtO and PtO 2 species.

Reduction results in loss of both 0 and OH from the Sn and produces metallic

Sn. The extent of these processes increases as the pretreatment temperature

increases. The chemical state of the Pt changes with pretreatment tempera-

ture. At or below I00°C, the predominant forms are Pt-O-Sn and Pt(OH) 2. As

the reduction temperature increases, more Pt(OH) 2 forms. This fact suggests

that Pt(OH) 2 plays an important role in the low-temperature catalytic oxida-
tion of CO. The results demonstrate that the application of surface analyti-

cal techniques in studies of real catalysts can provide information which is

useful in understanding catalytic behavior.

_T. Fryberger, personal communication
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TABLE I

O/Sn Atomic Ratios Versus Pretreatment Temperature

Pretreatment AES t ESCAtt

untreated 1.32 1.56

75oC 1.08 1.45

I00oc 1.05 1.39

125oc 1.04 1.33

175oc 1.05 1.21

tCalculated using methods described in reference 22.

ttCalculated using methods described in reference 19.

TABLE II

ESCA Pt 4f Peak Asslg_ments

Species Binding Energy (eV)

pto(bulk) I 70.9

pto(crystallite ) 2 71.3

Pt-O-Sn 2 72.3

I 72.8
et(OH) 2

PtO I 74.2

I 74.9
PtO 2

I. Assignments taken from reference 19.

2. Assignments taken from references 12 and 23.
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Figure I.
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Figure 3.

c-

2
.B

UJ

LU
z
v

',,l,,,'l,,,,l,l,,l,,,,l,,

AES Sn I

,,,I,,,,I,,,,I,,,,I,,,,I,,
100 300 500

KINETIC ENERGY (eV)

Auger spectrum taken from the same as-received sample as the ESCA

spectrum shown in figure 2.

o_
r-

&.
{O
v

v

z

I I I
ISS

I I i ! 1 I I I

Jk_
Yk

I I I I I I I I
0.4 0.6 0.8 1.0

(e)

(d)

(c)

(b)

I I I
0 0.2

E/Eo

Figure 4. ISS spectra taken from (a) an unpretreated sample and samples re-

duced at (b) 75, (c) 100, (d) 125 and (e) 175°C in 40 Tort of CO

for I hour.

212



Figure 5.
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sample reduced at 175°C in 40 Tort of CO for I hour.
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Figure 8. ESCA Pt 4f peaks obtained from (a) an unpretreated sample and sam-
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